Microorganisms

1000. MJANHOX-NO3 MEDIUM WITH SUPPLEMENT

NaCl	3.000	g
K ₂ HPO ₄	0.014	g
CaCl ₂ x 2 H ₂ O	0.014	g
NH ₄ Cl	0.040	g
$MgSO_4 \times 7 H_2O$	0.340	g
$MgCl_2 \times 6 H_20$	0.418	g
KCI	0.033	g
$Fe_2(SO_4)_3 \times X H_2O$	0.005	g
NiCl ₂ x 6 H ₂ O	0.005	mg
$Na_2SeO_3 \times 5 H_2O$	0.005	mg
$Na_2SiO_3 \times 9 H_2O$	0.500	g
Trace mineral solution (see below)	1.000	ml
Distilled water	1000.000	ml

Before autoclaving, the pH of the Medium is adjusted with NaOH to 7.5-8.0. After autoclaving, the filter-sterilized vitamin solution (0.1% volume), and each of the separately autoclaved, concentrated solutions are added to the medium at a final concentration described below. Then a mix gas (80% H_2 , 20% CO_2) is purged for 5 min. Finally, the mix gas is compressed into gas phase (> 80% volume of the tube or bottle) at 3 atm.

$Na_2S_2O_3 \times 5 H_2O$	10	mΜ
NaHCO ₃	0.20	%
NaNO ₃	0.05	%
Trace mineral solution:		
nitrilotriacetic acid	1.500	g
MnSO ₄ x 2 H ₂ O	0.500	g
$CoSO_4 \times 7 H_2O$	0.500	g
ZnSO ₄ x 7 H ₂ O	0.180	g
CuSO ₄ x 5 H ₂ O	0.010	g
KAI(SO4)2 x 12 H2O	0.020	g
H_3BO_3	0.010	g
$Na_2MoO_4 \times 2 H_2O$	0.010	g