

119a: METHANOBREVIBACTER MEDIUM

KH ₂ PO ₄	0.50	g
$MgSO_4 \times 7 H_2O$	0.40	g
NaCl	0.40	g
NH ₄ Cl	0.40	g
CaCl ₂ x 2 H ₂ O	0.05	g
Trace element solution SL-10	1.00	ml
$FeSO_4 \times 7 H_2O$ solution (0.1% w/v)	2.00	ml
Yeast extract (OXOID)	1.00	g
Na-acetate	1.00	g
Na-formate	2.00	g
Clarified rumen fluid	200.00	ml
Fatty acid mixture	20.00	ml
Sodium resazurin (0.1% w/v)	0.50	ml
NaHCO ₃	4.00	g
L-Cysteine HCl x H_2O	0.50	g
$Na_2S \times 9 H_2O$	0.50	g
Distilled water	780.00	ml

1. Dissolve ingredients except bicarbonate, cysteine and sulfide. Sparge medium with 80% H_2 and 20% CO_2 gas mixture for 30 - 45 min to make it anoxic. Add and dissolve bicarbonate, then dispense medium under 80% H_2 and 20% CO_2 gas atmosphere into anoxic Hungate-type tubes to 30% of their volume and autoclave. Add cysteine and sulfide from sterile anoxic stock solutions prepared under 100% N_2 gas. Prior to use check pH of complete medium and adjust to 6.8 - 7.0, if necessary.

2. After inoculation add sterile 80% H_2 and 20% CO_2 gas mixture to 1 bar overpressure.

Trace element solution SL-10 (from medium 320)

HCI (25%)	10.00	ml
$FeCl_2 \times 4 H_2O$	1.50	g
ZnCl ₂	70.00	mg
MnCl ₂ x 4 H ₂ O	100.00	mg
H ₃ BO ₃	6.00	mg
$CoCl_2 \times 6 H_2O$	190.00	mg
$CuCl_2 \times 2 H_2O$	2.00	mg
$NiCl_2 \times 6 H_2O$	24.00	mg
$Na_2MoO_4 \times 2 H_2O$	36.00	mg
Distilled water	990.00	ml

First dissolve $FeCl_2$ in the HCl, then dilute in water, add and dissolve the other salts. Finally make up to 1000.00 ml.

Microorganisms

119a: METHANOBREVIBACTER MEDIUM

Clarified rumen fluid (from medium 1310)

Rumen fluid from cow or sheep (obtained from fistulated animals or abattoir refuse) is filtered through muslin, autoclaved at 121°C for 15 min and then centrifuged at 27,000 g for 20 min. The supernatant is made anoxic by sparging with 100% N_2 gas for 15 min, dispensed under same gas atmosphere into anoxic serum vials to 30% of volume and then stored frozen at -20°C.

Fatty acid mixture (from medium 119)

Isobutyric acid	23.00	ml
DL-2-Methylbutyric acid	27.00	ml
Valeric acid	27.00	ml
Isovaleric acid	27.00	ml
Distilled water	896.00	ml

Adjust pH to 7.5 with concentrated NaOH.

$FeSO_4 \times 7 H_2O$ solution (0.1% w	//v) (from medium 119)	
$FeSO_4 \times 7 H_2O$	1.00	g
H_2SO_4 (0.1 N)	1000.00	ml

The ferrous sulfate solution is not stable and should be freshly prepared.