Microorganisms

119c: GUDONGELLA MEDIUM

KH ₂ PO ₄	0.50	g
$MgSO_4 \times 7 H_2O$	0.40	g
NaCl	0.40	g
NH ₄ Cl	0.40	g
CaCl ₂ x 2 H ₂ O	0.05	g
Trace element solution SL-10	1.00	ml
FeSO ₄ x 7 H ₂ O solution (0.1% w/v)	2.00	ml
Yeast extract (OXOID)	1.00	g
Na-acetate	1.00	g
Na-formate	2.00	g
Sludge fluid	50.00	ml
Fatty acid mixture	20.00	ml
Sodium resazurin (0.1% w/v)	0.50	ml
NaHCO ₃	0.50	g
L-Cysteine HCl x H ₂ O	0.50	g
$Na_2S \times 9 H_2O$	0.50	g
Distilled water	930.00	ml

Dissolve ingredients except bicarbonate, cysteine and sulfide. Sparge medium with 100% N_2 gas for 30 - 45 min to make it anoxic. Add and dissolve bicarbonate, adjust pH to 6.8 and dispense medium under 100% N_2 gas atmosphere into anoxic Hungate-type tubes or serum vials and autoclave. Add cysteine and sulfide from sterile anoxic stock solutions prepared under 100% N_2 gas. Prior to use check pH of complete medium and adjust to 6.8 - 7.0, if necessary.

Trace element solution SL-10 (from medium 320)

HCI (25%)	10.00	ml
FeCl ₂ x 4 H ₂ O	1.50	g
ZnCl ₂	70.00	mg
$MnCl_2 \times 4 H_2O$	100.00	mg
H ₃ BO ₃	6.00	mg
CoCl ₂ x 6 H ₂ O	190.00	mg
CuCl ₂ x 2 H ₂ O	2.00	mg
$NiCl_2 \times 6 H_2O$	24.00	mg
$Na_2MoO_4 \times 2 H_2O$	36.00	mg
Distilled water	990.00	ml

First dissolve $FeCl_2$ in the HCl, then dilute in water, add and dissolve the other salts. Finally make up to 1000.00 ml.

Microorganisms

119c: GUDONGELLA MEDIUM

Sludge fluid (from medium 119)

Yeast extract	4.00	g
Sludge	1000.00	ml

Add 0.4% yeast extract to sludge from an anaerobic digester, and after gassing with nitrogen gas for a few minutes incubate it at 37°C for 24 hours. Then centrifuge the sludge at 13000 g and autoclave the resulting, clear supernatant in screw-capped vessels under nitrogen gas. The sludge fluid can be stored at 8-12°C in the dark.

Fatty acid mixture (from medium 119)

Isobutyric acid 23.00	ml
DL-2-Methylbutyric acid 27.00	ml
Valeric acid 27.00	ml
Isovaleric acid 27.00	ml
Distilled water 896.00	ml

Adjust pH to 7.5 with concentrated NaOH.

FeSO₄ x 7 H₂O solution (0.1% w/v) (from medium 119)

FeSO ₄ x 7 H ₂ O	1.00	g
H_2SO_4 (0.1 N)	1000.00	ml

The ferrous sulfate solution is not stable and should be freshly prepared.