Microorganisms

926. ALKALIPHILIC THERMOCOCCUS MEDIUM

NaCl	27.70	g
$MgSO_4 \times 7 H_2O$	7.00	g
$MgCl_2 \times 6 H_2O$	5.50	g
KCI	0.65	g
NaBr	0.10	g
NaHCO ₃	0.32	g
K ₂ HPO ₄	1.00	g
CaCl ₂ x 2 H ₂ O	0.05	mg
Trace element solution (see medium 141)	20.00	ml
KI	15.00	mg
H ₃ BO ₃	0.03	g
Distilled water	2000.00	ml

Prepare the medium anaerobically under nitrogen. Do not adjust the pH.

Prepare separate anaerobic stock solutions of, Casamino acids(10%), Yeast extract (10%), and glycine (2M = 150 g/l). A 0.5M polysulphide solution is prepared by dissolving 12.0 g $Na_2S \times 9 H_2O$ in oxygen free water, followed by adding 1.6 g sulphur - the solution will be dark yellow.

To the sterile, anaerobic, mineral medium add:

0.12 ml polysulphide/10 ml medium, yeast extract to a final concentration of 0.2% and glycine to a final concentration of 0.1 M for \underline{DSM} $\underline{10322}$.

0.08 ml polysulphide/10 ml medium, casamino acids to a final concentration of 0.2% for \overline{DSM} 11906. The may be precipitation of material and the medium will turn pale yellow due to the addition of the polysulphide. The colour will disappear as the strain grows.